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1. Introduction

As non-perturbative formulations of M-theory and string theory, th BFSS matrix model [1]

and the IKKT matrix model [2] has been extensively studied. Since the BFSS matrix model

is supposed to describe M-theory in an infinitely boosted flame, the action is the same as a

low energy effective action on multiple BPS D0-branes in type IIA superstring. From the

conservation of the D0-charge, we can not construct D-branes without the D0-charge in

this action. This means that the D-branes in the theory always need to have nonzero field

strengths and thus non-commutative world-volumes. The IKKT matrix model has same

problem if we think it is described by the BPS D(−1)-branes in type IIB superstring.

In order to overcome this, one might consider the matrix model based on non-BPS

D0-branes or D0 − D0 pairs [3] since these branes have no conserved charges and it was

shown that we can construct any D-branes from them [4, 3] using the boundary string

field theory action [5, 6] or boundary state.1 Furthermore, such unstable D-branes can

decay into the closed string theory then restore 32 supersymmetries. In [10]–[12] such 32

unbroken supersymmetries in the action of unstable D-branes were discussed. On the other

hand, the BPS D0-branes actions can have unbroken 16 supersymmetries only. Thus it

is interesting to study the matrix models based on the unstable D-branes. However, the

presence of the tachyons can not allow us to use a simple effective action for unstable

D-branes although the string field theory actions can be used at least in principle.2

Recently, a ghost D-brane in superstring theories was introduced as an object that

cancels the effects of a D-brane [17]. Thus a pair of D-brane and ghost D-brane at the

same point is physically equivalent to the closed string vacuum. This is similar to the

pair of D-brane and anti-D-brane, especially, after the tachyon condensation or VSFT [18].

1See [7 – 9] for the tachyon dynamics in open string theory.
2For the two-dimensional string theory, it was proposed that the c = 1 matrix model, which had been

known to describe the two-dimensional string theory, can be considered as a tachyon action on multiple D0-

branes [13 – 15] and in [16] it was indeed shown that the boundary string field theory action for D0-branes

is equivalent to the c = 1 matrix model for this case. Maybe we can find some simple action for other cases.
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However, for the ghost D-brane case we do not have the tachyon and then we can consider

the “low energy effective action” for the D-branes and the ghost D-branes. In particular,

for the D0-brane or D(−1)-brane, we can have a simple matrix model action for the pairs.

(Here the ghost D-brane has wrong sign for the kinetic term and the spectrum contains

fermionic scalars and bosonic spinors. Thus the theory will be non-unitary for separated

D-brane and ghost D-brane and we should seriously consider a physical meaning of the

low energy effective action or the ghost D-brane itself, although we will not do it in this

paper.)

In this note we consider this matrix model based on pairs of D(−1)-brane and ghost

D(−1)-brane for type IIB superstring though a physical meaning of this matrix model is

not clear by now. Of course, we can consider D0-brane and ghost D0-brane for type IIA

superstring, however, we will concentrate on the D(−1) brane action mainly for notational

simplicity (Another reason is that a ghost D(−1)-brane action does not have kinetic term

and it might be easier to consider the (path-)integral for the action than other ghost Dp-

brane.) Our main interest in this paper is supersymmetry on the matrix model. Because

pairs of D-brane and ghost D-brane without any nonzero vev will be equivalent to the

closed string vacuum unlike the D-brane-anti-D-brane pairs, 32 supersymmetries should

be unbroken on it. We will see that 32 supersymmetries of pairs of D-brane and ghost

D-brane are actually unbroken despite the fact that a half of them are realized nonlinearly,

which usually means the symmetries are broken.

The organization of this paper is as follows. In section 2 we study the world volume

action of pairs of D9-brane and ghost D9-brane. In section 3 we propose a matrix model

based on D(−1)-brane and ghost D(−1)-brane and show the translational symmetry and

32 supersymmetries are unbroken. In section 4 we draw conclusions and discuss future

problems.

2. Pairs of D9-brane and ghost D9-brane

In this section we consider the world volume theory on N pairs of D9-brane and ghost

D9-brane in type IIB superstring following [17].3

It is well known that the low energy effective action of the N D9-brane is the ten-

dimensional U(N) super Yang-Mills action,

L = −
1

4g2
trN×N (FµνFµν) −

i

2g2
trN×N

(

λ̄ΓµDµλ
)

, (2.1)

where the gauge field Aµ and the gaugino λ, which is a Majorana-Weyl spinor, are written

in matrix notation and the spinor index was not explicitly written. The supersymmetry

transformation is given by

(δ + δ′)Aµ = −iζ̄Γµλ (2.2)

(δ + δ′)λ =
1

2
FµνΓµνζ + ζ ′, (2.3)

3The ghost D-brane was considered in [19] and some aspects of the ghost D-brane were considered

implicitly in [20].
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where ζ corresponds to the unbroken 16 supersymmetries, which is supposed to be linearly

realized in the superfield formalism, and ζ ′ corresponds to the nonlinearly realized 16

supersymmetries which is broken by the presence of the D9-branes.

The world volume theory of N pairs of D9-brane and ghost D9-brane can be described

by a gauge theory with U(N |N) Chan-Paton matrices and the low energy action in which

massive fields and higher derivative terms are dropped is given by the super Yang-Mills

action with the supergroup U(N |N) [17]. The gauge field Aµ is replaced by

Âµ =

(

A
(1)
µ χµ

χ†
µ A

(2)
µ

)

, (2.4)

where A(i) and χ are bosonic and fermionic N × N matrices, respectively. A(1) (or A(2))

comes from the open string between the N D-branes (or the N ghost D-branes) and χ are

from the open string between the D-branes and the ghost D-branes. Similarly, λ is replaced

by

λ̂ =

(

λ(1) ϕ

ϕ† λ(2)

)

, (2.5)

where λ(i) and ϕ is a fermionic and bosonic spinor N ×N matrices, respectively. Then the

Lagrangian is given by

L = −
1

4g2
Str2N×2N

(

F̂µν F̂µν
)

−
i

2g2
Str2N×2N

(

¯̂
λΓµDµλ̂

)

, (2.6)

where Str denotes the supertrace which is defined by

StrX̂ = trA − trD, (2.7)

where

X̂ =

(

A B

C D

)

. (2.8)

It may be important to note that the gauge group U(N |N) does not have decoupled

U(1) part unlike (2.1) and it may be significantly different from the action with gauge

group SU(N |N).4 This fact can be seen as follows.5 The gauge field Âµ can be written as

Â =
1

2N
Atr Ã

2N +
1

2N
AStrK + AaTa, (2.9)

where

K =

(

Ã
N 0

0 − Ã
N

)

(2.10)

and Ta which is bosonic and satisfies StrTa = trTa = 0 and Ã
2N form the generators of

the SU(N |N) subgroup of the U(N |N). Then the kinetic term containing Atr and/or

AStr is proportional to (∂µAtr
ν − ∂νA

tr
µ )(∂µAStr

ν − ∂νAStr
µ ) because of Str(Ã2NK) = 2N

4Similar phenomena happen in noncommutative and non-anti-commutative gauge theory with U(N)

gauge group [21]. For the superalgebra, see [22].
5This U(1) part in U(N |N) was discussed in [23] more carefully.
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and Str(Ã2N
Ã
2N ) = Str(KK) = Str(Ã2NTa) = Str(KTa) = 0. There is no interaction

term for Atr since interaction terms are written by commutators, however, it is easy to

see there are interaction terms contain AStr and Aa. Therefore both AStr and Aa are

not decoupled from others. Note that for the N D-brane and M ghost D-branes with

N 6= M the gauge group U(N |M) contains a decoupled U(1) part and we can decompose

U(N |M) = U(1) × SU(N |M).

Supersymmetry transformations for the Lagrangian (2.6) can be easily obtained from

(2.3) since only the gauge group was changed. Only a problem is that the fermion ζ does

not commute with Âµ and such property is need to show the invariance. This is because

the supermatrix contain fermions in off-diagonal parts. However, if we introduce

ζ̂ = ζK, (2.11)

we find, for example, ζÂµ = (KÂµK)ζ and then [Âµ, ζ̂] = 0. 6 We also find that {λ̂, ζ̂} = 0.

Hence the supersymmetry transformations for (2.6) are given by

(δ + δ′)Âµ = −i
¯̂
ζΓµλ̂ (2.12)

(δ + δ′)λ̂ =
1

2
F̂µνΓµν ζ̂ + ζ̂ ′. (2.13)

Actually, if we formally expand “bosonic” superfield Â as Â = AaT̂a, where Aa is a usual

bosonic field and T̂a is the “bosonic” supermatrix, and “fermionic” superfield λ̂ as λ̂ =

(λaK)T̂a, where λa is a usual fermionic field, then Str2N×2N

(

¯̂
λΓµDµλ̂

)

in (2.6) contains

Str2N×2N

(

T̂a[T̂b, T̂c]
)

= fabc where fabc is bosonic constant antisymmetric for a, b, c. Thus,

using this basis we can trivially follow the standard computation showing the invariance

of (2.1) under the supersymmetry.

Here the supersymmetry transformations associated with ζ̂ ′ are nonlinear and they

seem to be broken. This seems to contradict the fact that the pair of D-brane and ghost

D-brane is equivalent to the closed string vacuum. However, in the next section, we will

see nonlinearly realized symmetries can be unbroken.

3. Matrix model based on D-brane and ghost D-brane

Now we consider N pairs of D(−1)-brane and ghost D(−1)-brane and the low energy

effective action of those. The action is given by the dimensional reduction of (2.6) to 0

dimension which replace Âµ(x) (and λ̂(x)) to Φ̂µ (and ψ̂):

S = −
1

4g2
Str2N×2N

([

Φ̂µ, Φ̂ν

] [

Φ̂µ, Φ̂ν
])

−
1

2g2
Str2N×2N

(

¯̂
ψΓµ

[

Φµ, ψ̂
])

, (3.1)

where

Φ̂µ =

(

Φ
(1)
µ χµ

χ†
µ Φ

(2)
µ

)

(3.2)

6The constant grasmman variable was considered in [24] in a different context.
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and

ψ̂ =

(

ψ(1) ϕ

ϕ† ψ(2)

)

. (3.3)

The supersymmetry transformations are

(δ + δ′)Φ̂µ = i
¯̂
ζΓµφ̂ (3.4)

(δ + δ′)ψ̂µ =
i

2

[

Φ̂µ, Φ̂ν

]

Γµν ζ̂ + ζ̂ ′. (3.5)

Of course, this matrix model is also obtained from the IKKT matrix model action, which

is the 0 dimensional reduction of the 10 dimensional U(N) super Yang-Mills theory, by

replacing U(N) by supergroup U(N |N).7 Note that a U(1) factor is decoupled from other

generators of U(N |N) for this matrix model because there is no kinetic term, though

U(N |N)/U(1) is not the SU(N |N) subgroup.

As the IKKT matrix model has been proposed as a nonperturbative formulation of

type IIB superstring, this matrix model could give a nonperturbative formulation of type

IIB superstring in some large N limit. It is very interesting to investigate this possibility,

however, we will only consider symmetry of it here.

There is a constant shift symmetry,

δΦ̂µ = aµ, δψ̂ = 0, (3.6)

which can be understood as the space-time translation of the D(−1)-brane and the ghost

D(−1)-brane. This symmetry is realized nonlinearly and if we separate the D-brane and

ghost D-brane it will be broken by the presence of the D-brane. However, for Φ̂ = ψ̂ = 0

it should be unbroken since both the D-brane and the ghost D-brane disappear.8

To resolve this puzzle, we first consider vev of a possible order parameter classically.

It should be gauge invariant and then 〈Str(δΦ̂µ)〉 or the supertrace of polynomials of Φ̂, ψ̂

can be considered. It is easy to see that

〈Str(δΦ̂µ)〉 = Str(aµ) = 0, (3.7)

and the transformation of other gauge invariant operators also vanish for Φ̂ = ψ̂ = 0 classi-

cally. In this way, the nonlinear transformation can be regarded as unbroken. Furthermore,

we expect it is unbroken quantum mechanically. Actually for U(N |N) all correlation func-

tions of gauge invariants will vanish at Φ̂ = ψ̂ = 0 [25] [17] . This is consistent with

the interpretation as a closed string vacuum. The transformation of the correlation func-

tions also vanish because the δ transformed Φ̂ to just a constant. Therefore it is unbroken

quantum mechanically.

7For other supermatrix models, see [25]-[28]. Note that the action (3.5) is not only a supermatrix model,

i.e. supergauge symmetric, but also supersymmetric. Thus this is a supersymmetrized supermatrix model.
8Strictly speaking, there are no symmetry breaking in 0 or 1 dimensional theories. We could rigorously

define broken or unbroken symmetry by considering higher dimensional analogues, compactified theory or

a large N limit.
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On the other hand, for a generic classical background

Φ̂ = diag(b1, b2, . . . , bN , c1, c2, . . . , cN ), ψ̂ = 0, (3.8)

it will be broken. Let us consider a gauge invariant Str(f1(Φ̂, ψ̂)) and the transformation

of it, δStr(f1(Φ̂, ψ̂)), where fi is some polynomial. Taking f1 = Φ̂µ1 · · · Φ̂µM , we have

δStr(f1(Φ̂, ψ̂)) = aµ1

N
∑

i=2

(

M
∏

a=1

(bµa

i )2 −

M
∏

a=2

(cµa

i )2

)

+ (permutation of µ1 andµi). (3.9)

Therefore if

bµ
i = cµ

i , (i = 1, . . . , N, µ = 0, . . . , 9) (3.10)

(or that with a permutation of N vectors ci) is satisfied, δStr(f1(Φ̂, ψ̂)) = 0. Considering

the transformation of 〈Str(f1(Φ̂, ψ̂))Str(f2(Φ̂, ψ̂)) · · ·〉, we see that the translational sym-

metry is unbroken if (3.10) is satisfied otherwise it is broken. This is consistent with the

interpretation that a D-brane and a ghost D-brane in any pair are at same position for

(3.10) and are physically equivalent to the closed string vacuum.

We expect the nonlinear supersymmetries generated by ζ̂ ′ is also unbroken for (3.10) in

the same way. Here we note that Strψ̂ is not gauge invariant because Str(X̂ψ̂) 6= Str(ψ̂X)

where X̂ is a usual supermatrix and ψ is a “fermionic” supermatrix, i.e. a supermatrix

with fermions in its diagonal part. Instead, Str(Kψ̂) = tr(ψ̂) is gauge invariant because

Str(KX̂ψ̂) = Str(Kψ̂X) and consistent with the fact that a “fermion” bilinear Str(ζ̂ ′ψ̂) is

gauge invariant.9 Then, it is easy to see that

〈Str(Kδψ̂)〉 = Str(Kζ̂ ′) = ζ ′Str(K2) = 0, (3.11)

and the supersymmetric transformation of other gauge invariant operators also vanish for

Φ̂ = ψ̂ = 0 classically. For the generic classical background (3.8) we can easily show

that (3.10) is the condition for the nonlinear supersymmetries being unbroken by taking

f1 = Φ̂µ1 · · · Φ̂µM ψ̂. Therefore the matrix model (3.1) has the 32 unbroken supersymmetries

and 10 dimensional translation symmetry (and the Lorentz symmetry linearly realized). It

is very interesting to investigate this highly symmetric matrix model further.

Finally, we will discuss the supersymmetry algebra. In [2] it was shown that the IKKT

matrix model has the 32 supersymmetries which form the super symmetry algebra. We

can trivially extend it to our case. Indeed, if we define δ
(1)

ζ̂
= δ

ζ̂
+ δ′

ζ̂
and δ

(2)

ζ̂
= i(δ

ζ̂
− δ′

ζ̂
),

then we have the algebra of 32 supersymmetries

[δ
(i)

ζ̂
, δ

(j)

ξ̂
] = εµPµδij , (3.12)

where ε = −2i
¯̂
ζΓµξ̂ and Pµ is the constant shift of Φ̂.

9We also note that Str(ψ̂ψ̂′) = −Str(ψ̂′ψ̂) which is same property as the trace for usual matrices.
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4. Conclusions and discussion

We have studied the world volume theory of the pairs of D-brane and ghost D-brane, espe-

cially D(−1)-brane and ghost D(−1)-brane and have seen that the nonlinear symmetries,

the supersymmetries and the translation symmetry, are unbroken in the model. This is

consistent with the interpretation of the system as the closed string vacuum. We can ex-

tend our study in this paper to BFSS matrix model, and other dimensional branes. We can

also consider the type I superstring and supergroup OSp. Of course, our discussion in this

paper is rather naive and need further study. In particular the problem of the unitarity

may be important.

The nonlinear supersymmetries in pairs of D9-brane and ghost D9-brane will be also

unbroken in the same way as D(−1)-branes. In this case, we can consider the instanton only

on the D9-branes and in the small instanton limit what we have is physically equivalent

to a D5-brane with nothing [29]. (If we put the same instanton also on the ghost D9-

branes, we have closed string vacuum and if we put the anti-instanton on the ghost D9-

branes, we have D5-anti-D5-brane pair.) Then the half of the nonlinear supersymmetries

generated by ζ̂ ′ which satisfies F̂µνΓµν ζ̂ ′ = 0 are expected to be unbroken, but others

are broken from 〈δ(F̂µνΓµν ψ̂)〉 = 0. Of course, the half of the linear supersymmetries

generated by ζ̂ which satisfies F̂µνΓµν ζ̂ = 0 are also unbroken. Thus we have different

unbroken 16 supersymmetries from what D9-brane has and if we consider the anti-instanton

instead of the instanton we will have the other half of unbroken supersymmetries. This is

interesting [11] since we discussed the 32 supersymmetries even though for gauge theories

without gravity 16 supersymmetries are maximal in a usual sense. However, there is a

problem for this picture. For the D9-brane-ghost D9-brane case, the superalgebra is

[δ
ζ̂
, δ

ξ̂
] = δε + gauge transformation, [δ

ζ̂
, δ′

ξ̂′
] = δε′ , [δ′

ζ̂′
, δ′

ξ̂′
] = 0, (4.1)

where δε is the translation by εµ = 2ζ̂Γµξ̂. In the compactified space-time, δε′ is the

constant shift of Âµ, i.e. Wilson line, by εµ = 2ζ̂Γµξ̂′ and corresponds to the space-

time translation in the T-dual picture. Thus for the uncompactified space-time, δ
ζ̂

form

the 16 supersymmetries, but δ′
ζ̂′

is trivial. What we expect is that the δ′
ζ̂′

also form the

superalgebra. To make this clear is an interesting question.

Another question is how to realize the Lorentz symmetry of pairs of Dp-brane and

ghost Dp-brane. Since it mixes the coordinate and the fields in general, to find the unbroken

symmetry will be interesting.
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